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Abstract— Current and next generation of telescopes resort
to adaptive optics in order to compensate for atmospheric
turbulence and correct the incident wavefront, which is affected
mainly as far as the phase is concerned, in order to get clearer
images of the observed objects. Starting from the statistical
description of the atmospheric turbulence, the reconstruction
of the turbulent phase is therefore a key problem in astro-
nomical seeing and is central to designing control systems to
command the adaptive optic deformable mirror. Moreover, the
introduction of a dynamical model able to predict the turbu-
lence helps improving the performance of the control system
and its description through a principal component analysis
(PCA) approach yields compactness to the representation while
preserving the physical insight of a modal decomposition.

I. INTRODUCTION

Current generation of optical telescopes, such as those

employed in the Very Large Telescope (VLT) project [1],

house lenses of several meters diameter obtained resorting to

the segmented mirror technology, that, combined with active

and adaptive optics computer based control systems, allows

astronomical seeing far beyond that of previous monolithic

mirror devices equipped with mechanical control.

In these experiments, the active control system operates

with typical one-second timescales on the thin segmented

mirror (primary mirror) in order to compensate for envi-

ronmental factors due for instance to gravity at different

telescope inclinations, wind, structure deformations, and so

on. Conversely, adaptive systems intervene on an “actively

stabilized systems” at higher frequencies (timescales of

1/100th second and less) and are used to correct the distortion

introduced by the atmospheric turbulence, by controlling

a correction mirror placed along the line of sight or by

deforming the telescope secondary mirror.

In this respect, it is of paramount importance, and it will

be even more in next generation devices [7] [4], envisaging

lenses of thirty to one hundred meters, to develop algorithms

that are capable to feed the adaptive control systems with

the information on the turbulent phase, which are needed to

drive the actuators that modify the shape of the deformable

mirrors.

These algorithms, basically referring to the reconstruction

and the prediction of the atmospheric turbulence, set a trade-

off between the need for accuracy and the need for time
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efficiency for the real time application, so that the wavefront

correction is accurate with respect to the current state of the

atmosphere.

To perform the task, the control system calculates the

actuator commands from wavefront-sensor measurements,

obtained using a reference star or even the observed object

itself if it is bright enough and has sufficiently sharp light

gradients.

To complete the picture, zonal or modal control methods

can be used. In zonal control, each zone or segment of

the mirror is controlled independently by wavefront signals

that are measured for the sub-aperture corresponding to that

zone. In modal control, the wavefront is expressed as the

linear combination of modes that best fit the atmospheric

perturbations.

The paper is organized as follows: First, Sections II and

III introduce the turbulence statistical model and the adaptive

optics principles. Then, Sections IV and V present the body

of the work, focusing on the reconstruction and the prediction

of the turbulent phase. We conclude in Sections VI and VII

with discussing some simulations.

II. TURBULENCE PHYSICAL MODEL

A. Turbulence temporal model

The turbulence is generally modeled as the superposition

of a finite number l of layers: The ith layer models the

atmosphere from hi−1 to hi meter high, where h0 = 0, as in

Fig. 1(a). Let r be a point on telescope aperture and ψi(r, t)
be the value of the ith layer on point r at time t: Thus the

total turbulence phase at r is

φ(r, t) =
l

∑

i=1

γiψi(r, t) (1)

where γi are suitable coefficients. Without loss of generality

we assume that
∑l

i=1 γ2
i = 1.

Assuming the turbulence to be stationary the spatial char-

acteristics of the turbulence are temporally invariant: the Von

Karman model of turbulence spatial characteristics will be

described in Section II-B.

The ith layer is assumed to translate in front of the tele-

scope pupil with constant velocity vi (Taylor approximation

[10]), thus

ψi(r, t + kT ) = ψi(r − vikT, t) , i = 1, . . . , l (2)

where kT is a delay multiple of the sampling period T .

Furthermore the layers are assumed to be independent,

hence

E[ψi(ri, ti)ψj(rj , tj)] = 0 , i = 1, . . . , l, j 6= i .
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B. Turbulence spatial model

Since the spatial characteristics of the turbulence are

assumed to be time invariant, then in this section we consider

the time as fixed at a constant value t = t̄. Furthermore to

simplify the notation we will omit t̄ from equations.

Since we omit t from the notation, then φ(ri) is the value

of the turbulent phase at the point ri on the aperture plane.

Considering the turbulent phase as a spatial process, it is a

zero-mean (wide-sense) stationary stochastic process: Thus it

is completely characterized by its second order properties. In

practice its spatial statistical model is commonly described

by means of the structure function, which measures the

averaged difference between the phase at two points at

locations r1 and r2 of the wavefront (see Fig. 1(b)), which

are separated by a distance r,

Dφ(r) =
〈

|φ(r1) − φ(r2)|
2
〉

.

The structure function Dφ is related to the covariance func-

tion Cφ(r) = 〈φ(r1), φ(r2)〉, as:

Dφ(r) = 2
(

σ2
φ − Cφ(r)

)

, (3)

where σ2
φ is the phase variance.

According to the Von Karman theory, the phase structure

function evaluated at distance r is the following [3]:

Dφ(r) =

(

L0

r0

)5/3

c

[

Γ(5/6)

21/6
−

(

2πr

L0

)5/6

K5/6

(

2πr

L0

)

]

,

where K·(·) is the MacDonald function (modified Bessel

function of the third type), Γ is the Gamma function, L0 is

the outer scale, r0 is a characteristic parameter called the

Fried parameter [5], and c = 21/6Γ(11/6)
π8/3

[

24
5 Γ(6/5)

]5/6
.

From the relation between the structure function and the

covariance (3), the spatial covariance of the phase between

two points at distance r results

Cφ(r) =

(

L0

r0

)5/3
c

2

(

2πr

L0

)5/6

K5/6

(

2πr

L0

)

. (4)

A commonly accepted assumption is that all the layers

have the same second order statistics: Thus from (4)

E[ψi(r1)ψi(r2)] = Cφ(|r1 − r2|) . (5)

C. Description on a discrete domain

Fig. 1(b) shows the domain of images formed on the

telescope lens. Since equations derived considering the sim-

plified domain of Fig. 1(c) can easily be extended to the case

of Fig. 1(b), we will neglect the central hole of the telescope,

thus we will concentrate on the case of Fig. 1(c).

In real applications only a finite number of sensors is

available: These are usually distributed on a grid, thus the

turbulent phase is measured only on a discrete domain L,

which is that in Fig. 1(d), i.e. a sensor is placed at each

node of the grid. Without loss of generality we assume that

sensors are uniformly spaced: The closest neighbors of each

sensor (both along the horizontal and the vertical directions)

are placed at a distance of ps meters.

Let φ(t) and ψi(t) be the column vectors containing

respectively {φ(rj , t), rj ∈ L} and {ψi(rj , t), rj ∈ L},

then ψi(t) and φ(t) inherit the statistical properties of ψi(·, ·)
and φ(·, ·): i.e. they are zero-mean (wide-sense) stationary

processes, with Cψ = E[ψi(t)ψi(t)
T ] = E[φ(t)φ(t)T ], ∀i, t

and E[ψi(t)ψj(t
′)T ] = 0 ∀i, j, t, t′, i 6= j. Each entry of Cψ

can be easily computed from (5) as follows

Cψ(i, j) = E [ψ(ri)ψ(rj)] = Cφ(|ri − rj |). (6)

Hence we can rewrite (1) as follows:

φ(t) =
l

∑

i=1

γiψi(t) (7)

where ψi(t), i = 1, . . . , l are independent and have the same

second order properties. Thus the coefficient γi relates to the

energy associated to the ith layer.

(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) Atmospheric turbulence is modeled as a superposition of l
layers. (b) Telescope image domain and coordinates. (c) Telescope image
simplified domain. (d) Continuous line grid: domain L. (e) Dashed line grid:
domain Lsp. (f) Example of subaperture.

III. ADAPTIVE OPTICS

The adaptive optics system is formed by a wavefront

sensor and by a set of deformable mirrors. Its aim is to

properly control the deformable mirrors to compensate the

signal’s phase delays, due to the atmospheric turbulence.

Since the deformable mirrors modify the signal on the

telescope aperture, they can be viewed as a feedback. We

can summarize the algorithm of the adaptive optics system

with the following procedure:

1) estimate the current turbulent phase, as described in

Section IV;

2) compute the correction contribution to obtain the com-

pensated phases;

3) control the deformable mirrors, i.e. apply to the system

the new correction phases.

The most general relation between the deformable mirrors

input u(t), the real turbulent phase φ(t) and the measure-

ment, y(t), is the following

y(t) = H(φ(t) + D(u(t))) + w(t) (8)

where w is a white noise, H(·) is the measurement function

and D(·) the “actuator function”. Even if there are several

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 WeA18.1

567



types of noise which can occur in the measurement process,

we shall assume that their global effect, w, is a zero-mean

Gaussian noise, i.e. w ∼ N (0, Σw). Usually Σw = Iσ2
w.

Moreover we assume w(t) uncorrelated with φ(t′) ∀t′ and

with w(t′) ∀t′ 6= t. Usually (8) is well approximated by its

linear counterpart [10] [8]:

y(t) = Hφ(t) + HDu(t) + w(t) (9)

where H and D are suitable matrices that correspond to H(·)
and D(·).

The sum of the time to acquire an image and the compu-

tational time to compute the new control u(t) is larger than

the sampling period T : Thus we assume a k̄T delay in the

feedback, i.e. to compute u(t) we can use the measurements

y(t − k), k ≥ k̄, while y(t − k), k = 0, . . . , k̄ − 1
cannot be used. To improve performances u(t) is commonly

computed exploiting φ̂(t|t− k̄), the prediction of φ(t) given

measurements only till time t− k̄. A possible choice for u(t)
shall be

u(t) = D†φ̂(t|t − k̄)

where D† is pseudo-inverse of D. A proper choice for k̄
shall be k̄ = 2 (see [8] [9]).

Now let m be the number of actuators, |L| the number

of sensors in L and p the number of measurements, where

commonly p = 2|L| (in the hypothesis of Shack-Hartmann

wavefront sensors, Section IV). Since |L| can be quite large

(in our simulations |L| ≈ 103), the idea of building a dy-

namic model on φ(t) is impracticable. Hence, to reduce the

computational time and the influence of noise, φ(t) is pro-

jected on a set of spatial bases C̄ =
[

c0 c1 . . . c|L|
]

.

Astronomers commonly choose the set of Zernike polyno-

mials as bases, however, to exploit the knowledge about the

second order statistical properties of the signal, we use the

set of bases provided by principal component analysis [6].

First notice that the adaptive optics system doesn’t take

into consideration the phase translation over the entire tele-

scope aperture: Thus we will neglect the projection of φ(t) on

c0 =
[

1 1 . . . 1
]T

: Instead of φ(t), we will consider

ϕ(t) = φ(t) −
1

|L|







1
...

1







([

1 . . . 1
]

φ(t)
)

=

(

I −
1

|L|
1

)

φ(t)

where 1 is a |L|×|L| matrix of ones. Let Σϕ = E[ϕ(t)ϕ(t)T ]
then

Σϕ =

(

I −
1

|L|
1

)

Cψ

(

I −
1

|L|
1

)T

.

Σϕ is a covariance matrix, thus there exists a unitary matrix

U =
[

u1 . . . u|L|

]

, i.e. UUT = UT U = I ., such that

Σϕ = UΛUT (10)

with

Λ = diag(λ1 , λ2 , . . . , λ|L|), λ1 ≥ · · · ≥ λ|L| ≥ 0 .

Since ϕ(t) is orthogonal to c0, it is simple to prove that

λ|L| = 0, thus {c0, u1, . . . , u|L|−1} forms a basis of R
|L|.

Define x′ = UT ϕ then E[x′x′T ] = Λ. x′ is called the

vector of principal components of ϕ, while U is the set of

orthogonal bases associated to the principal components.

Principal component analysis provides an optimal dimen-

sionality reduction step: Indeed it is sufficient to consider

only the first n principal components to get the minimum

variance (of the projection error) approximation of the orig-

inal vector. Let x be the random vector constructed from ϕ
by means of the first n principal components, that is

x(t) =
[

u1 . . . un

]T
ϕ(t) . (11)

Then

ϕ(t) = Cx(t) + η(t) ≈ Cx(t)

where C =
[

u1 . . . un

]

and η(t) = ϕ(t) − Cx(t).
Moreover

E‖η‖2 = E(ϕ − Cx)T (ϕ − Cx) =

|L|−1
∑

i=n+1

λi. (12)

It is possible to prove that this is the minimum distance

between the random vector ϕ and a vector given by a linear

combination of n bases. In the following sections we will

consider a linear dynamic model for x(t) instead of ϕ(t):
Since usually n ≪ |L|, this will remarkably reduce the

time to compute predictions and controls. Hereafter we will

assume that the effect of the deformable mirrors is exactly

known, i.e. D or D(·), is known. Hence, from the prediction

point of view, we can discard it, for example defining a new

measurement vector y′(t) = y(t) − HDu(t). This is equal

to assume u(t) ≡ 0, ∀t: Thus we investigate the problem

of phase prediction assuming the system in open loop, i.e.

u(t) ≡ 0, ∀t.

IV. PHASE RECONSTRUCTION

In this section we introduce a statistical model for the

measurement procedure. To reduce the noise influence on

the measurements, sensor at point ri usually takes some

kind of spatial mean of the turbulent phase among its

neighborhood. We call subaperture corresponding to ri, the

set of points considered by the sensor placed on ri to take its

measurement. To be more precise, first let Lsp be the grid of

Fig. 1(e), then Lsp is decomposed in |L| subsets, which are

the subapertures: The subaperture corresponding to ri ∈ L

is

subap(ri) =

{

rj ∈ Lsp | ri = arg min
ri∗∈L

||ri∗ − rj ||
2

}

.

Accordingly to the above definition subapertures are disjoint

sets. An example of subaperture is the set of nodes, apper-

taining to grid Lsp, inside the square in bold dashed line in

Fig. 1(f).

Let φ̄(t) be a vector containing the turbulent phase values

on the nodes of Lsp at time t. From the above considerations,

(9) should be rewritten as follows:

y(t) = Hφ̄(t) + HDu(t) + w(t) (13)
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Notice that L ⊂ Lsp, thus for each i, 1 ≤ i ≤ |L|, there

exists a j, 1 ≤ j ≤ |Lsp|, such that φi(t), the ith component

of φ(t), is equal to φ̄j(t), the jth component of φ̄(t). Thus

we can define

W (i, j) =

{

1 if φi(t) = φ̄j(t)
0 otherwise.

such that φ(t) = Wφ̄(t).
In our simulation we will consider two cases for H:

1) The measurement process of φ(r′i, t) is modeled as a

spatial mean on the subaperture corresponding to r′i
(as in Fig. 1(f) and Fig. 2(a)), that is:

φ(r′i, t) ≈





∑

rj∈subap(r′

i)

φ̄(rj , t)





1

|subap(r′i)|
.

Accordingly with the above equation, H is

H(i, j) =

{ 1
|subap(r′

i)|
if rj ∈ subap(r′i)

0 otherwise.

2) In this case we simulate the Shack-Hartmann sensor:

It measures the vertical and horizontal slopes of the

phase, instead of measuring the phase itself. The

measurement procedure is assumed to be quadcell-like,

[10]. For each r′i ∈ L, let the sets I1(r
′
i), I2(r

′
i), I3(r

′
i),

I4(r
′
i) be defined as follows

I1(r
′
i) = {rj ∈ Lsp | rj ∈ subap(r′i), rj is in the

top row of subap(r′i)}

I2(r
′
i) = {rj ∈ Lsp | rj ∈ subap(r′i), rj is in the

bottom row of subap(r′i)}

I3(r
′
i) = {rj ∈ Lsp | rj ∈ subap(r′i), rj is in the

left-border column of subap(r′i)}

I4(r
′
i) = {rj ∈ Lsp | rj ∈ subap(r′i), rj is in the

right-border column of subap(r′i)}

I1(r
′
i), I2(r

′
i), I3(r

′
i), I4(r

′
i) are also shown in Fig.

2(b) and Fig. 2(c). Then vertical and horizontal slopes

at r′i are approximated introducing a block matrix H =
[

HT
1 HT

2

]T
and defining

H1(i, j) =











1
|I1(r′

i)|
if rj ∈ I1(r

′
i)

− 1
|I2(r′

i)|
if rj ∈ I2(r

′
i)

0 otherwise

H2(i, j) =











1
|I3(r′

i)|
if rj ∈ I3(r

′
i)

− 1
|I4(r′

i)|
if rj ∈ I4(r

′
i)

0 otherwise.

Finally we define the (input) signal to noise ratio as

follows: SNR = trace(HΣϕHT )/trace(Σw).
Since we cannot access directly to the value of ϕ(t), we

use the measurement vector y(t) to estimate it. The minimum

variance linear estimator of ϕ(t) given y(t) is

ϕ̂(t|y(t)) = F ′y(t)

(a) (b) (c)

Fig. 2. (a) Spatial mean on the subaperture corresponding to ri. (b) Shack-
Hartmann’s vertical slope estimation. (c) Shack-Hartmann’s horizontal slope
estimation.

where F ′ =
(

I − 1
|L|1

)

WΣφ̄HT
(

HΣφ̄HT + Σw

)−1
and

Σφ̄ = E[φ̄(t)φ̄(t)T ]. Σφ̄ can be computed similarly to Cψ

in (6). Recalling the representation of ϕ(t) introduced in

Section III we have that ϕ̂(t|y(t)) ≈ Cx̂(t|y(t)) where

x̂(t|y(t)) = CT ϕ̂(t|y(t)) = CT F ′y(t) = Fy(t)

where F = CT F ′. The above equation provides a “static”

estimation of x(t). In the following section we will include it

in a dynamic model that shall provide also good predictions

of x(t).

V. TURBULENCE PREDICTION

Since the prediction of ϕ(t) is needed to improve the

performances of the adaptive optics system, and since ϕ(t) ≈
Cx(t), then we model the dynamic of x(t), which hereafter

will be called the state of the system. From the Taylor

approximation, (2) and (7), the system dynamic seems to

be not so complex, hence a linear dynamic shall fit it quite

well. We consider the following linear system
{

x(t + 1) = Ax(t) + v(t)
z(t) = x(t) + ξ(t)

(14)

where A is a suitable n×n matrix, v(t) is a zero-mean white

Gaussian noise, v(t) ∼ N (0, Q), z(t) = Fy(t) and ξ(t) is

zero-mean white Gaussian noise. The noise processes v(t)
and ξ(t) are assumed to be orthogonal.

To reduce the computational load, we use the estimation

equation of x as output equation instead of using y(t). ξ(t)
is the estimation error of x(t), thus it is orthogonal to z(t).
Hence ξ(t) ∼ N (0, R) where R = CT ΣϕC−F (HΣφ̄HT +
Σw)FT . We investigate two cases for A and Q:

1) First we consider A and Q diagonal, as already con-

sidered in previous works ([8], [9], [2]). In this case

A = diag(a1, . . . , an) and Q = diag(q1, . . . , qn).
We compute A and Q via least squares from N
samples: Let x̄(1), . . . , x̄(N) be N samples of the state

vector and let X =
[

x̄(1) . . . x̄(N − 1)
]

, Y =
[

x̄(2) . . . x̄(N)
]

. Let Xi and Yi be respectively the

ith row of X and Y , and let x̄i(t) be the ith component

of x̄(t). Then (assuming ||Xi||2 6= 0)

ai = Y T
i Xi(X

T
i Xi)

−1 , i = 1, . . . , n

and

qi =
1

N − 2

N−1
∑

t=1

v̄i(t)
2

where v̄i(t) = x̄i(t + 1) − aix̄i(t).
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2) In this case we consider A and Q full matrices. Again

we compute A and Q via least squares from N samples

(assuming |XT X| 6= 0):

A = Y T X(XT X)−1 , i = 1, . . . , n

and

Q =
1

N − 2

N−1
∑

t=1

v̄(t)v̄(t)T

where v̄(t) = x̄(t + 1) − Ax̄(t).

From (11) and (10), the components of x(t) are uncor-

related: This means that E[x(t)x(t)T ] is diagonal, however

E[x(t + 1)x(t)T ] in general is not diagonal, and thus A is

not diagonal too. Hence we expect that the use of a full A
in the dynamic model (14) can lead to better performances

than an A diagonal.

Let us provide a simple example to prove that A in

general can be far to be diagonal: let ν(t) be a zero-

mean Gaussian white-noise process, with Eν(t)2 = 1.

Let us have two sensors: let the measurement taken by

the first be y1(t) while y2(t) is that taken by the second,

thus y(t) = [y1(t) y2(t)]
T . Moreover let they be perfect

sensors: The noise has no influence on the measurements.

Let ν(t) represent the new value of a “turbulence layer”

that translates from the first sensor to the second exactly

in a sample period, i.e. y1(t) = ν(t), y2(t) = ν(t − 1).

In this case Cψ =

[

1 0
0 1

]

. To make things simpler we

assume here to be interested also on the signal’s mean,

that is we compute principal components of φ(t) = y(t)
(in this example considering ϕ(t) instead of φ(t) makes,

fruitlessly, computation more complicated). We obtain U =

C =

[

1 0
0 1

]

and x(t) = [x1(t) x2(t)]
T = [y1(t) y2(t)]

T .

Then E[x(t)x(t)T ] =

[

1 0
0 1

]

, while E[x(t + 1)x(t)T ] =

E[

[

ν(t + 1)
ν(t)

]

[ν(t) ν(t − 1)]] =

[

0 0
1 0

]

. Hence A =
[

0 0
1 0

]

, which is definitely not diagonal.

This example can be extended also to higher or-

der dynamics and suggests that the common assump-

tion ([8], [2], [9]) of A diagonal (or more in general

E[xi(t)xj(t
′) | xi(t̄), . . . , xi(t−1)] = 0, with t̄ ≤ t′ ≤ t−1

and i 6= j, t̄ is chosen depending on model’s order) can

sometimes be unrealistic. In Section VI we try to explore

how prediction performances of system (14) change taking

A diagonal or full.

We use the dynamic model (14) to compute the k-step for-

ward prediction of the state. This is done using the Kalman

filter. Assuming A asymptotically stable, it is well known

that the Kalman filter will asymptotically converge, i.e. the

algebraic Riccati equation (ARE) associated to the Kalman

filter will have a unique solution. The ARE associated to the

state prediction in system (14) is:

P1 = A(P1 − P1(P1 + R)−1P1)A
T + Q

where P1 is the asymptotic covariance of the 1-step pre-

diction error. Let x̂(t + k|t) be the prediction of x(t + k)
given measurements until time t. Its prediction error is

ǫk(t+k) = x(t+k)−x̂(t+k|t). If (14) fits quite well the real

system dynamic, then Σǫk
= E[ǫk(t + k)ǫk(t + k)T ] is well

approximated by the asymptotic error covariance computed

by the ARE solution: i.e. Σǫk
≈ Pk, where Pk is defined as

follows

Pk = Ak−1P1(A
T )k−1 +

k−1
∑

i=1

Ak−1−iQ(AT )k−1−i . (15)

On the other hand the prediction error for ϕ(t+k) is ek(t+
k) = ϕ(t + k) − Cx̂(t + k|t) = C(x(t + k) − x̂(t + k|t)) +
η(t + k), thus from (15) and (12), we have

E‖ek‖
2 = trace(CΣǫk

CT ) +

|L|−1
∑

i=n+1

λi (16)

≈ trace(CPkCT ) +

|L|−1
∑

i=n+1

λi . (17)

We stress the fact that (17) is an asymptotic error, but it

depends on the model chosen in (14) and on the learnt

parameters, i.e. on how close the identified model is to

the true one. Fig. 3 shows a comparison between E‖ek‖2

computed with (16) and (17) in a simulation. We set k = 2,

L0 = 16m, r0 = 1.5m, the telescope aperture diameter

d = 8m, ps = 0.2m, |Lsp/L| = 9, SNR = 4, N = 2000.

The turbulence is formed by 3 independent layers, which

move with different velocities: 7m/s at 0km high, 5.7m/s at

6km, 11m/s at 8.5km. The sample period of the adaptive

optics system is set to 32ms.

In practice when A and Q are full matrices (17) provides

a good approximation of (16), while when A and Q are

diagonal (17) is usually smaller than (16). To make the

results of our simulations quite independent on the number

of validation samples, in Section VI we report the results

obtained using (17) instead of (16). However this is not

sufficient to make the results independent on the learning

sequence: Since (17) depends on the learnt parameters, it can

still take to slight different results in different simulations,

e.g. (17) is not strictly decreasing in Fig. 3(b).
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Fig. 3. In solid line the 2-step prediction errors obtained using A and Q
diagonals. In dashed line those obtained with A and Q full. Measurements
are obtained simulating the Shack-Hartmann sensor. (a) Percent sample error
computed with (16). (b) Percent asymptotic error computed with (17).

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 WeA18.1

570



VI. SIMULATIONS AND DISCUSSION

From (7), the turbulence is a linear combination of the

layers: In our simulation we consider turbulence formed

by l = 3 layers which move with different velocities. We

compare prediction performances of the dynamic system (14)

with A,Q diagonal and with A,Q full. The comparison is

made among two possible turbulence conditions. For each

turbulence condition we compute (17) ranging the number

of bases from n = 65 to n = 209. Moreover we compute the

performances considering both spatial mean and the Shack-

Hartmann models for the measurement process (as described

in Section IV). The percent norm of the error is plotted in

the figures, i.e. E[‖ek‖
2]/E[‖ϕ‖2] · 100 .

Since the delay due to image acquisition and control

computation should last approximatively 2T [8], [9] we set

k = 2. The results reported in Fig. 4 are obtained setting

the values of the parameters to: k = 2, r0 = 1.5m, d = 8m,

ps = 0.2m, |Lsp/L| = 9, SNR = 4, N = 2000. Different

values for (L0,SNR) are explored: (a),(b) L0 = 12m,

SNR = 4; (c),(d) L0 = 20m, SNR = 4. The turbulence is

formed by 3 independent layers, which move with different

velocities: 7m/s at 0km high, 5.7m/s at 6km, 11m/s at 8.5km.

Furthermore the sample period of the adaptive optics system

is set to 32ms.

As expected, the “full matrices” system outperforms the

diagonal one, however at the cost of an increase in the

running time: While the time complexity for state prediction

is O(n) for the diagonal system, it becomes O(n2) in the

“full matrices” case . Since the system has to work in real-

time, it is worth to quantify the increase in complexity

and eventually give some suggestions to limit it. The total

running time for a cycle of the adaptive optics algorithm is

O(np) + O(nm) + O(n2), where O(np) and O(nm) are

respectively the time to estimate x̂(t|t) and to compute the

control u(t + k), while O(n2) is the time to compute the

prediction x̂(t + k|t). Notice that by construction p ≫ n,

hence O(n2) is not the dominant term. Since the “full

matrices” system has better performances than the diagonal

one even using much less bases, one can use a smaller n
to reduce the running time. Finally, since A and Q can be

identified off-line, their identification is not to be considered

as a relevant factor in the time complexity of the on-line

algorithm.

VII. CONCLUSIONS

In this paper we have compared two types of linear models

for the prediction of atmospheric turbulent phase.

We have chosen the principal component representation to

have the minimum representation error for the signal. Then

we have compared the performance on 2-step prediction of a

diagonal linear model, as already proposed in literature, and

of a “full matrices” dynamic model. In all our simulations

the latter improves the performances of the first.

The cost of this improvement is an increase in the time

complexity of the prediction step. However in our simu-

lations the performances of the “full matrices” system are

better than those of the diagonal one even using much less
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Fig. 4. In solid line the 2-step prediction errors obtained using A and Q
diagonals. In dashed line those obtained with A and Q full. Both spatial
mean (in (a), (c)) and Shack-Hartmann (in (b), (d)) methods of measurement
are simulated. Different values for (L0,SNR) are explored: (a),(b) L0 =

12m, SNR = 4; (c),(d) L0 = 20m, SNR = 4 .

bases: Hence we are confident that the use of a smaller

number of bases combined with the use of the “full matrices”

dynamic model can lead to better performances without

compromising the running time.
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